Notice bibliographique
- Notice
Type(s) de contenu et mode(s) de consultation : Texte noté : sans médiation
Auteur(s) : Ablowitz, Mark J.
Fokas, Athanasios S. (1952-....)
Titre(s) : Introduction to complex variables and applications [Texte imprimé] / Mark J. Ablowitz,... Athanassios S. Fokas,...
Publication : Cambridge : Cambridge university press, copyright 2021
Description matérielle : 1 vol. (VIII-411 p.) ; 25 cm
Collection : Cambridge texts in applied mathematics
Lien à la collection : Cambridge texts in applied mathematics
Note(s) : Bibliogr. p. 403-405. Index
"The study of complex variables is both beautiful from a purely mathematical point
of view, and very useful for solving a wide array of problems arising in applications.
This introduction to complex variables, suitable as a text for a one-semester course,
has been written for undergraduate students in applied mathematics, science, and engineering.
Based on the authors' extensive teaching experience, it covers topics of keen interest
to these students, including ordinary differential equations, as well as Fourier and
Laplace transform methods for solving partial differential equations arising in physical
applications. Many worked examples, applications, and exercises are included. With
this foundation, students can progress beyond the standard course and explore a range
of additional topics, including the generalized Cauchy theorem, Painlevé equations,
computational methods, and conformal mapping with circular arcs. Advanced topics are
labeled with an asterisk and can either be included in the syllabus or form the basis
for challenging student projects"
Sujet(s) : Fonctions d'une variable complexe
Genre ou forme : Manuels d'enseignement supérieur
Indice(s) Dewey :
515.9 (23e éd.) = Fonctions de variables complexes
Identifiants, prix et caractéristiques : ISBN 978-1-108-95972-8 (br.)
Identifiant de la notice : ark:/12148/cb471285339
Notice n° :
FRBNF47128533
(notice reprise d'un réservoir extérieur)
Table des matières : Complex numbers and elementary functions ; Analytic functions and integration ;
Sequences, series and singularities of complex functions ; Residue calculus and applications
of contour integration ; Conformal mappings and applications.