Notice bibliographique
- Notice
Type(s) de contenu et mode(s) de consultation : Texte noté : électronique
Auteur(s) : Kodaira, Kunihiko (1915-1997)
Titre(s) : Theory of algebraic surfaces [Texte électronique] / Kunihiko Kodaira ; [translated by Kazuhiro Konno]
Publication : Singapore : Springer, copyright 2020
Description matérielle : 1 ressource dématérialisée
Collection : SpringerBriefs in mathematics
Lien à la collection : SpringerBriefs in mathematics (Internet)
Note(s) : Traduction du volume 20 de la série des Seminar Notes de l'Université de Tokyo, issue
d'un cours du professeur Kunihiko Kodaira en 1967. - Bibliogr. p.74. Index
This is an English translation of the book in Japanese, published as the volume 20
in the series of Seminar Notes from The University of Tokyo that grew out of a course
of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained
introduction to the theory of complex algebraic surfaces, including concise proofs
of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic
genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general
type as a practical application of the general theory. The book is aimed at graduate
students and also at anyone interested in algebraic surfaces, and readers are expected
to have only a basic knowledge of complex manifolds as a prereDaisū hōteishiki no
hanashiquisite
La pagination de l'édition imprimée correspondante est de : XIII-75 p.
Autre(s) auteur(s) : Konno, Kazuhiro. Traducteur
Sujet(s) : Fonctions de plusieurs variables complexes
Géométrie algébrique
Indice(s) Dewey :
516.352 (23e éd.) = Courbes et surfaces sur des plans projectifs et affines
Identifiants, prix et caractéristiques : ISBN 9811573794 (erroné). - ISBN 9789811573798 (erroné). - ISBN 9789811573804. - ISBN
9811573808
Identifiant de la notice : ark:/12148/cb46812185v
Notice n° :
FRBNF46812185
(notice reprise d'un réservoir extérieur)
Table des matières : Intro ; Foreword ; Preface ; Introduction (Purposes and Known Results) ; Contents
; 1 Fundamentals of Algebraic Surfaces ; 1.1 Exact Sequences ; 1.2 Divisors and
Linear Systems ; 1.3 Intersection Multiplicities and the Adjunction Formula ; 1.4
Riemann-Roch Theorem ; 2 Pluri-Canonical Systems on Algebraic Surfaces of General
Type ; 2.5 Notation ; 2.6 Vanishing Theorems ; 2.7 Composition Series ; 2.8 Conclusions
; Bibliography.