• Notice

Type(s) de contenu et mode(s) de consultation : Texte noté : sans médiation

Auteur(s) : Leskovec, Jurij (1980-....)  Voir les notices liées en tant qu'auteur
Rajaraman, Anand  Voir les notices liées en tant qu'auteur
Ullman, Jeffrey D. (1942-....)  Voir les notices liées en tant qu'auteur

Titre(s) : Mining of massive datasets [Texte imprimé] / Jure Leskovec,... Anand Rajaraman,... Jeffrey David Ullman,...

Édition : 3e ed.

Publication : Cambridge : Cambridge university press, copyright 2020

Description matérielle : 1 vol. (XI-553 p.) : ill. ; 26 cm

Note(s) : Notes bibliogr.
"The Web, social media, mobile activity, sensors, Internet commerce, and many other modern applications provide many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be used on even the largest datasets. It begins with a discussion of the MapReduce framework and related techniques for efficient parallel programming. The tricks of locality-sensitive hashing are explained. This body of knowledge, which deserves to be more widely known, is essential when seeking similar objects in a very large collection without having to compare each pair of objects. Stream-processing algorithms for mining data that arrives too fast for exhaustive processing are also explained. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering, each from the point of view that the data is too large to fit in main memory. Two applications: recommendation systems and Web advertising, each vital in e-commerce, are treated in detail. Later chapters cover algorithms for analyzing social-network graphs, compressing large-scale data, and machine learning. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs. Written by leading authorities in database and Web technologies, it is essential reading for students and practitioners alike"


Sujet(s) : Exploration de données  Voir les notices liées en tant que sujet
Données massives  Voir les notices liées en tant que sujet

Indice(s) Dewey :  006.312 (23e éd.) = Exploration des données (informatique)  Voir les notices liées en tant que sujet


Identifiants, prix et caractéristiques : ISBN 9781108476348 (br.)

Identifiant de la notice  : ark:/12148/cb46538495b

Notice n° :  FRBNF46538495 (notice reprise d'un réservoir extérieur)



Table des matières : Data mining ; MapReduce and the new software stack ; Finding similar items ; Mining data streams ; Link analysis ; Frequent itemsets ; Clustering ; Advertising on the Web ; Recommendation systems ; Mining social-network graphs ; Dimensionality reduction ; Large-scale machine learning ; Neural nets and deep learning.

Localiser ce document(1 Exemplaire)

Tolbiac - Rez-de-jardin - libre-accès - Sciences et techniques - Salle R - Informatique 

1 partie d'exemplaire regroupée

005.7 LESK m
support : livre