Notice bibliographique

  • Notice

Type(s) de contenu et mode(s) de consultation : Texte noté : électronique

Auteur(s) : Bonnard, Bernard (1952-....)  Voir les notices liées en tant qu'auteur
Chyba, Monique (1969-....)  Voir les notices liées en tant qu'auteur
Rouot, Jérémy  Voir les notices liées en tant qu'auteur

Titre(s) : Geometric and numerical optimal control [Texte électronique] : application to swimming at Low Reynolds number and magnetic resonance imaging / Bernard Bonnard, Monique Chyba, Jérémy Rouot

Publication : Cham : Springer, copyright 2018

Description matérielle : 1 online resource

Collection : SpringerBriefs in mathematics

Lien à la collection : SpringerBriefs in mathematics (Internet) 

Note(s) : Bibliogr. p. 106-108
This book introduces readers to techniques of geometric optimal control as well as the exposure and applicability of adapted numerical schemes. It is based on two real-world applications, which have been the subject of two current academic research programs and motivated by industrial use - the design of micro-swimmers and the contrast problem in medical resonance imaging. The recently developed numerical software has been applied to the cases studies presented here. The book is intended for use at the graduate and Ph. D. level to introduce students from applied mathematics and control engineering to geometric and computational techniques in optimal control.

Sujet(s) : Commande, Théorie de la  Voir les notices liées en tant que sujet

Indice(s) Dewey :  515.642 (23e éd.) = Théorie de la commande  Voir les notices liées en tant que sujet

Identifiants, prix et caractéristiques : ISBN 9783319947914. - ISBN 3319947915. - ISBN 9783319947907 (erroné). - ISBN 3319947907 (erroné)

Identifiant de la notice  : ark:/12148/cb45779984b

Notice n° :  FRBNF45779984 (notice reprise d'un réservoir extérieur)

Table des matières : Intro; Preface; Acknowledgements; Contents; About the Authors; 1 Historical Part-Calculus of Variations; 1.1 Statement of the Problem in the Holonomic Case; 1.2 Hamiltonian Equations; 1.3 Hamilton-Jacobi-Bellman Equation; 1.4 Second Order Conditions; 1.5 The Accessory Problem and the Jacobi Equation; 1.6 Conjugate Point and Local Morse Theory; 1.7 From Calculus of Variations to Optimal Control Theory and Hamiltonian Dynamics; 2 Weak Maximum Principle and Application to Swimming at Low Reynolds Number; 2.1 Pre-requisite of Differential and Symplectic Geometry; 2.2 Controllability Results.
2.2.1 Sussmann-Nagano Theorem2.2.2 Chow-Rashevskii Theorem; 2.3 Weak Maximum Principle; 2.4 Second Order Conditions and Conjugate Points; 2.4.1 Lagrangian Manifold and Jacobi Equation; 2.4.2 Numerical Computation of the Conjugate Loci Along a Reference Trajectory; 2.5 Sub-riemannian Geometry; 2.5.1 Sub-riemannian Manifold; 2.5.2 Controllability; 2.5.3 Distance; 2.5.4 Geodesics Equations; 2.5.5 Evaluation of the Sub-riemannian Ball; 2.5.6 Nilpotent Approximation; 2.5.7 Conjugate and Cut Loci in SR-Geometry; 2.5.8 Conjugate Locus Computation; 2.5.9 Integrable Case.
2.5.10 Nilpotent Models in Relation with the Swimming Problem2.6 Swimming Problems at Low Reynolds Number; 2.6.1 Purcell's 3-Link Swimmer; 2.6.2 Copepod Swimmer; 2.6.3 Some Geometric Remarks; 2.6.4 Purcell Swimmer; 2.7 Numerical Results; 2.7.1 Nilpotent Approximation; 2.7.2 True Mechanical System; 2.7.3 Copepod Swimmer; 2.8 Conclusion and Bibliographic Remarks; 3 Maximum Principle and Application to Nuclear Magnetic Resonance and Magnetic Resonance Imaging; 3.1 Maximum Principle; 3.2 Special Cases; 3.3 Application to NMR and MRI; 3.3.1 Model; 3.3.2 The Problems.

Localiser ce document(1 Exemplaire)

Document numérique : 

1 partie d'exemplaire regroupée

support : document électronique dématérialisé