Notice bibliographique
- Notice
Type(s) de contenu et mode(s) de consultation : Texte noté : sans médiation
Auteur(s) : Marquis, Timothée
Titre(s) : An introduction to Kac-Moody groups over fields [Texte imprimé] / Timothée Marquis
Publication : Zurich : European mathematical society, copyright 2018
Description matérielle : 1 vol. (XI-331 p.) : ill. ; 24 cm
Collection : EMS textbooks in mathematics
Lien à la collection : EMS textbooks in mathematics
Note(s) : Bibliogr. p. 315-320
"The book starts with an outline of the classical Lie theory, used to set the scene.
Part II provides a self-contained introduction to Kac-Moody algebras. The heart of
the book is Part III, which develops an intuitive approach to the construction and
fundamental properties of Kac-Moody groups. It is complemented by two appendices,
respectively offering introductions to affine group schemes and to the theory of buildings.
Many exercises are included, accompanying readers throughout their journey. The book
assumes only a minimal background in linear algebra and basic topology, and is addressed
to anyone interested in learning about Kac-Moody algebras and/or groups, from graduate
(master) students to specialists"--Page 4 of cover
Sujet(s) : Kac-Moody, Algèbres de
Groupes de Lie
Groupes algébriques linéaires
Indice(s) Dewey :
512.55 (23e éd.) = Algèbres et groupes topologiques et connexes
Identifiants, prix et caractéristiques : ISBN 9783037191873. - ISBN 3037191872. - ISBN 9783037196878 (erroné). - ISBN 3037196874
(erroné) (rel.)
Identifiant de la notice : ark:/12148/cb45725263f
Notice n° :
FRBNF45725263
(notice reprise d'un réservoir extérieur)
Table des matières : I.. A few words on the classical Lie theory: ; 1.. From Lie groups to Lie algebras
-- ; 2.. Finite-dimensional (real or complex) Lie algebras -- ; II.. Kac-Moody algebras:
; 3.. Basic definitions -- ; 4.. The Weyl group of a Kac-Moody algebra -- ; 5.. Kac-Moody
algebras of finite and affine type -- ; 6.. Real and imaginary roots -- ; III.. Kac-Moody
groups: ; 7.. Minimal Kac-Moody groups -- ; 8.. Maximal Kac-Moody groups -- ; 9..
Loose ends -- ; A.. Group schemes -- ; B.. Buildings and BN-pairs.