• Notice

Type(s) de contenu et mode(s) de consultation : Texte noté : électronique

Auteur(s) : Ionescu, Radu Tudor  Voir les notices liées en tant qu'auteur
Popescu, Marius  Voir les notices liées en tant qu'auteur

Titre(s) : Knowledge transfer between computer vision and text mining [Texte électronique] : similarity-based learning approaches / Radu Tudor Ionescu, Marius Popescu

Publication : [Cham] : Springer international publishing AG, copyright 2016

Description matérielle : 1 ressource dématérialisée

Collection : Advances in computer vision and pattern recognition, ISSN 2191-6594

Lien à la collection : Advances in computer vision and pattern recognition (Internet) 


Comprend : Motivation and Overview ; Learning Based on Similarity ; Part I: Knowledge Transfer from Text Mining to Computer Vision ; State of the Art Approaches for Image Classification ; Local Displacement Estimation of Image Patches and Textons ; Object Recognition with the Bag of Visual Words Model ; Part II: Knowledge Transfer from Computer Vision to Text Mining ; State of the Art Approaches for String and Text Analysis ; Local Rank Distance ; Native Language Identification with String Kernels ; Spatial Information in Text Categorization ; Conclusions.

Note(s) : Notes bibliogr.
This ground-breaking text/reference diverges from the traditional view that computer vision (for image analysis) and string processing (for text mining) are separate and unrelated fields of study, propounding that images and text can be treated in a similar manner for the purposes of information retrieval, extraction and classification. Highlighting the benefits of knowledge transfer between the two disciplines, the text presents a range of novel similarity-based learning techniques founded on this approach. Topics and features: Describes a variety of similarity-based learning approaches, including nearest neighbor models, local learning, kernel methods, and clustering algorithms Presents a nearest neighbor model based on a novel dissimilarity for images, and applies this for handwritten digit recognition and texture analysis Discusses a novel kernel for (visual) word histograms, as well as several kernels based on pyramid representation, and uses these for facial expression recognition and text categorization by topic Introduces an approach based on string kernels for native language identification Contains links for downloading relevant open source code With a foreword by Prof. Florentina Hristea This unique work will be of great benefit to researchers, postgraduate and advanced undergraduate students involved in machine learning, data science, text mining and computer vision. Dr. Radu Tudor Ionescu is an Assistant Professor in the Department of Computer Science at the University of Bucharest, Romania. Dr. Marius Popescu is an Associate Professor at the same institution


Sujet(s) : Apprentissage automatique  Voir les notices liées en tant que sujet
Exploration de données  Voir les notices liées en tant que sujet
Vision par ordinateur  Voir les notices liées en tant que sujet

Indice(s) Dewey :  006.03 (23e éd.) = Méthodes informatiques particulières - Dictionnaires et encyclopédies  Voir les notices liées en tant que sujet


Identifiants, prix et caractéristiques : ISBN 9783319303673. - ISBN 3319303678. - ISBN 9783319303659 (erroné). - ISBN 3319303651 (erroné)

Identifiant de la notice  : ark:/12148/cb45345590w

Notice n° :  FRBNF45345590 (notice reprise d'un réservoir extérieur)



Localiser ce document(1 Exemplaire)

Document numérique : 

1 partie d'exemplaire regroupée

ACQNUM-4057
support : document électronique dématérialisé