Notice bibliographique
- Notice
Type(s) de contenu et mode(s) de consultation : Texte noté : électronique
Auteur(s) : Zhang, Ping
Titre(s) : Color-induced graph colorings [Texte électronique] / Ping Zhang
Publication : Cham : Springer, 2015
Description matérielle : 1 ressource dématérialisée
Collection : Springer briefs in mathematics
Lien à la collection : SpringerBriefs in mathematics (Internet)
Note(s) : Titre de l'écran-titre (visionné le 4 mars 2016). - Comprend des références bibliographiques
A comprehensive treatment of color-induced graph colorings is presented in this book,
emphasizing vertex colorings induced by edge colorings. The coloring concepts described
in this book depend not only on the property required of the initial edge coloring
and the kind of objects serving as colors, but also on the property demanded of the
vertex coloring produced. For each edge coloring introduced, background for the concept
is provided, followed by a presentation of results and open questions dealing with
this topic. While the edge colorings discussed can be either proper or unrestricted,
the resulting vertex colorings are either proper colorings or rainbow colorings. This
gives rise to a discussion of irregular colorings, strong colorings, modular colorings,
edge-graceful colorings, twin edge colorings and binomial colorings. Since many of
the concepts described in this book are relatively recent, the audience for this book
is primarily mathematicians interested in learning some new areas of graph colorings
as well as researchers and graduate students in the mathematics community, especially
the graph theory community
Sujet(s) : Coloriage de graphes
Indice(s) Dewey :
511.5 (23e éd.) = Théorie des graphes (mathématiques)
Identifiants, prix et caractéristiques : ISBN 9783319203942
Identifiant de la notice : ark:/12148/cb44680137b
Notice n° :
FRBNF44680137
(notice reprise d'un réservoir extérieur)
Table des matières : 1. Introduction ; 2. The Irregularity Strength of a Graph ; 3. Modular Sum-Defined
Irregular Colorings ; 4. Set-Defined Irregular Colorings ; 5. Multiset-Defined Irregular
Colorings ; 6. Sum-Defined Neighbor-Distinguishing Colorings ; 7. Modular Sum-Defined
Neighbor-Distinguishing Colorings ; 8. Strong Edge Colorings of Graphs ; 9. Sum-Defined
Chromatic Indices ; References ; Index.