Notice bibliographique
- Notice
Type(s) de contenu et mode(s) de consultation : Texte noté : électronique
Auteur(s) : Atten, Markus Sebastiaan Paul Rogier van (1973-....)
Titre(s) : Brouwer meets Husserl [Texte électronique] : on the phenomenology of choice sequences / by Mark van Atten
Publication : Dordrecht : Springer, 2007
Description matérielle : 1 ressource dématérialisée
Collection : Synthese library ; v. 335
Note(s) : Includes bibliographical references (pages 169-180) and indexes
"Can the straight line be analysed mathematically such that it does not fall apart
into a set of discrete points, as is usually done but through which its fundamental
continuity is lost? And are there objects of pure mathematics that can change through
time?" "The mathematician and philosopher L.E.J. Brouwer argued that the two questions
are closely related and that the answer to both is "yes". To this end he introduced
a new kind of object into mathematics, the choice sequence. But other mathematicians
and philosophers have been voicing objections to choice sequences from the start."
"This book aims to provide a sound philosophical basis for Brouwer's choice sequences
by subjecting them to a phenomenological critique in the style of the later Husserl."--Jacket
Sujet(s) : Husserl, Edmund (1859-1938)
Brouwer, Luitzen Egbertus Jan (1881-1966) -- Critique et interprétation
Husserl, Edmund (1859-1938) -- Critique et interprétation
Phénoménologie
Suites (mathématiques)
Mathématiques -- Philosophie
Brouwer, Luitzen Egbertus Jan (1881-1966)
Brouwer, Luitzen E
Husserl, Edmund
Indice(s) Dewey :
511.36 (23e éd.) = Théorie de la preuve et mathématiques constructives ; 142.7 (23e éd.) = Phénoménologie
Identifiants, prix et caractéristiques : ISBN 9781402050879
Identifiant de la notice : ark:/12148/cb44657683z
Notice n° :
FRBNF44657683
(notice reprise d'un réservoir extérieur)
Table des matières : 1 ; An informal introduction --2 ; Introduction --3 ; The argument --4 ; The original
positions --5 ; The phenomenological incorrectness of the original arguments --6 ;
The constitution of choice sequences --7 ; Application : an argument for weak continuity
--8 ; Concluding remarks --App ; Intuitionistic remarks on Husserl's analysis of finite
number in the philosophy of arithmetic.