• Notice

Type(s) de contenu et mode(s) de consultation : Texte noté : électronique

Auteur(s) : Shepherd, Peter John  Voir les notices liées en tant qu'auteur

Titre(s) : A course in theoretical physics [Texte électronique] / P.J. Shepherd

Publication : Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2013

Description matérielle : 1 online resource

Note(s) : Includes index. - Includes bibliographical references and index. - Print version record and CIP data provided by publisher.
This book is a comprehensive account of five extended modules covering the key branches of twentieth-century theoretical physics, taught by the author over a period of three decades to students on bachelor and master university degree courses in both physics and theoretical physics. The modules cover nonrelativistic quantum mechanics, thermal and statistical physics, many-body theory, classical field theory (including special relativity and electromagnetism), and, finally, relativistic quantum mechanics and gauge theories of quark and lepton interactions, all presented in a single, se


Sujet(s) : Théorie quantique  Voir les notices liées en tant que sujet
Physique statistique  Voir les notices liées en tant que sujet
Physique  Voir les notices liées en tant que sujet

Genre ou forme : Manuels d'enseignement  Voir les notices liées en tant que genre ou forme

Indice(s) Dewey :  530 (23e éd.) = Physique  Voir les notices liées en tant que sujet


Identifiants, prix et caractéristiques : ISBN 9781118516911

Identifiant de la notice  : ark:/12148/cb44654031b

Notice n° :  FRBNF44654031 (notice reprise d'un réservoir extérieur)



Table des matières : A Course in Theoretical Physics; Contents; Notation; Preface; I NONRELATIVISTIC QUANTUM MECHANICS; 1 Basic Concepts of Quantum Mechanics; 1.1 Probability interpretation of the wave function; 1.2 States of definite energy and states of definite momentum; 1.3 Observables and operators; 1.4 Examples of operators; 1.5 The time-dependent Schrödinger equation; 1.6 Stationary states and the time-independent Schrödinger equation; 1.7 Eigenvalue spectra and the results of measurements; 1.8 Hermitian operators; 1.9 Expectation values of observables.
1.10 Commuting observables and simultaneous observability1.11 Noncommuting observables and the uncertainty principle; 1.12 Time dependence of expectation values; 1.13 The probability-current density; 1.14 The general form of wave functions; 1.15 Angular momentum; 1.16 Particle in a three-dimensional spherically symmetric potential; 1.17 The hydrogen-like atom; 2 Representation Theory; 2.1 Dirac representation of quantum mechanical states; 2.2 Completeness and closure; 2.3 Changes of representation; 2.4 Representation of operators; 2.5 Hermitian operators; 2.6 Products of operators.
2.7 Formal theory of angular momentum3 Approximation Methods; 3.1 Time-independent perturbation theory for nondegenerate states; 3.2 Time-independent perturbation theory for degenerate states; 3.3 The variational method; 3.4 Time-dependent perturbation theory; 4 Scattering Theory; 4.1 Evolution operators and Møller operators; 4.2 The scattering operator and scattering matrix; 4.3 The Green operator and T operator; 4.4 The stationary scattering states; 4.5 The optical theorem; 4.6 The Born series and Born approximation; 4.7 Spherically symmetric potentials and the method of partial waves.
4.8 The partial-wave scattering statesII THERMAL AND STATISTICAL PHYSICS; 5 Fundamentals of Thermodynamics; 5.1 The nature of thermodynamics; 5.2 Walls and constraints; 5.3 Energy; 5.4 Microstates; 5.5 Thermodynamic observables and thermal fluctuations; 5.6 Thermodynamic degrees of freedom; 5.7 Thermal contact and thermal equilibrium; 5.8 The zeroth law of thermodynamics; 5.9 Temperature; 5.10 The International Practical Temperature Scale; 5.11 Equations of state; 5.12 Isotherms; 5.13 Processes; 5.13.1 Nondissipative work; 5.13.2 Dissipative work; 5.13.3 Heat flow.
5.14 Internal energy and heat5.14.1 Joule's experiments and internal energy; 5.14.2 Heat; 5.15 Partial derivatives; 5.16 Heat capacity and specific heat; 5.16.1 Constant-volume heat capacity; 5.16.2 Constant-pressure heat capacity; 5.17 Applications of the first law to ideal gases; 5.18 Difference of constant-pressure and constant-volume heat capacities; 5.19 Nondissipative-compression/expansion adiabat of an ideal gas; 6 Quantum States and Temperature; 6.1 Quantum states; 6.2 Effects of interactions; 6.3 Statistical meaning of temperature; 6.4 The Boltzmann distribution.

Localiser ce document(1 Exemplaire)

Document numérique : 

1 partie d'exemplaire regroupée

ACQNUM-35797
support : document électronique dématérialisé